A numerical verification framework for differential privacy in estimation

Yunhai Han¹ and Sonia Martínez²

¹ Georgia Institute of Technology
 ² University of California, San Diego
 American Control Conference, July 10th, 2022

Introduction

- Differential privacy(df) makes it hard to distinguish outputs of a mechanism produced by adjacent inputs, which can help preserve the privacy of shared data.
- It is difficult to verify the df properties of the proposed estimation mechanisms^{[1][2][3]} since they take values on continuous spaces, requiring to check for an infinite set of inequalities.
- The numerical verification framework mitigates this problem by partitioning the continuous space into a suitably chosen finite set of collection and making the evaluation wrt this partition.
- We confirm the df properties of a novel W₂ MHE, while comparing its performance with alternative estimators in simulation.

Figure 1. An example of differential privacy in sensor network

[1]. Cortes, G. E. Dullerud, S. Han, J. L. Ny, S. Mitra, and G. J. Pappas, "Differential privacy in control and network systems," in IEEE Int. Conf. on Decision and Control, 2016, pp. 4252–4272 [2]. E. Nozari, P. Tallapragada, and J. Cortes, "Differentially private distributed convex optimization via functional perturbation," IEEE Transactions on Control of Network Systems, 2019 [3]. J. L. Ny and G. J. Pappas, "Differentially private filtering," IEEE Transactions on Control of Network Systems, 2019

Problem Formulation

System & Observation model:

$$\Omega: \begin{cases} x_{k+1} = f\left(x_k, w_k\right), \\ y_k = h\left(x_k, v_k\right), \end{cases}$$

where $x_k \in \mathbb{R}^{d_X}, y_k \in \mathbb{R}^{d_Y}, w_k \in \mathbb{R}^{d_W}$ and $v_k \in \mathbb{R}^{d_V}$

A state estimator of this system is a stochastic mapping:

$$\mathbb{R}^{(T+1)d_Y} \to \mathbb{R}^{md_X}$$
, for some $m \ge 1$.

Differential privacy in estimation:

Definition 1 ((ε , *d*-Adjacent), λ -Approximate, Differential Privacy): Let \mathcal{M} be a state estimator of System 1 and d_y a distance metric on $\mathbb{R}^{(T+1)d_Y}$. Given ε , λ , $d \in \mathbb{R}_{\geq 0}$, \mathcal{M} is (ε , *d*-adjacent), λ -approximate, differentially private if for any $y_{0:T}^1, y_{0:T}^2 \in \mathbb{R}^{(T+1)d_Y}$, with $d_y(y_{0:T}^1, y_{0:T}^2) \leq d$ we have

$$\mathbb{P}\left(\mathcal{M}\left(\mathbf{y}_{0:T}^{i}\right) \in E\right) \le \mathbf{e}^{\varepsilon} \mathbb{P}\left(\mathcal{M}\left(\mathbf{y}_{0:T}^{j}\right) \in E\right) + \lambda, \qquad (2)$$

- for i, j = 1, 2
- for all $E \subset \operatorname{range}(\mathcal{M})$
- (ε , *d*-adj), for $\lambda = 0^{3}$

Challenges & Solution

Technical challenges:

- \bullet

High-likelihood differential privacy:

Unknown range of the estimator -> High-likelihood differential privacy

Infinite set of space partition -> Identification of a suitable space partition

Definition 2: (High-likelihood (ε , d-adj) Differential Pri*vacy*). Suppose that \mathcal{M} is a state estimator of System 1. Given $\varepsilon, d \in \mathbb{R}_{>0}$, we say that \mathcal{M} is $(\varepsilon, d\text{-adj})$ differentially private with high likelihood $1 - \theta$ if there exists an event R with $\mathbb{P}(R) \geq 1 - \theta$ such that, for any two $y_{0:T}^{i}$, i = 1, 2, with $d_{\mathbf{y}}(\mathbf{y}_{0:T}^1, \mathbf{y}_{0:T}^2) \leq d$, we have:

$$\mathbb{P}(\mathcal{M}(\mathbf{y}_{0:T}^{i}) \in E|R) \le e^{\varepsilon} \mathbb{P}(\mathcal{M}(\mathbf{y}_{0:T}^{j}) \in E|R),$$

for $i, j \in \{1, 2\}$ and all events $E \subseteq \operatorname{range}(\mathcal{M})$.

Lemma 1: Suppose that \mathcal{M} is a high-likelihood (ε ,*d*-adj) differentially private estimator, with likelihood $1 - \theta$. Then, \mathcal{M} is $(\varepsilon, d\text{-adj}) - \lambda$ differentially private with $\lambda = \theta$.

Challenges & Solution

Identification of a suitable space partition:

Definition 3 (Differential privacy wrt a space partition): Let \mathcal{M} be an estimator of System 1 and $\mathcal{P} = \{E_1, \ldots, E_n\}$ be a space partition² of range(\mathcal{M}). We say that \mathcal{M} is (ε ,d-adj) differentially private wrt \mathcal{P} if the definition of (ε ,d-adj) differential privacy holds for each $E_k \in \mathcal{P}$.

Lemma 2: Let \mathcal{M} be a state estimator of System 1, and consider a partition of range (\mathcal{M}) , $\mathcal{P}_1 = \{E_1, \ldots, E_{n_1}\}$, which is *finer* than another partition $\mathcal{P}_2 = \{F_1, \ldots, F_{n_2}\}$ $(n_1 > n_2)$. That is, each F_i can be represented by the disjoint union $F_i = \bigcup_{s=1}^{m_i} E_{l_s}$. Then, if \mathcal{M} is $(\varepsilon, d\text{-adj})$ differentially private wrt \mathcal{P}_1 , then it is also differentially private wrt \mathcal{P}_2 .

²By partition we mean a collection of mutually exclusive and collectively exhaustive set of events wrt \mathbb{P} .

Challenges & Solution

Identification of a suitable space partition:

Lemma 3: Consider a partition $\mathcal{P} = \{E_i\}_{i \in \mathcal{I}}$ such that $\mathbb{P}(E_i) \leq \eta$ for all $i \in \mathcal{I}$. Then, if $(\varepsilon, d\text{-adj})$ differential privacy holds wrt the partition \mathcal{P} , then \mathcal{M} is $(\varepsilon, d\text{-adj})$ - λ differentially private with $\lambda = 2\eta e^{\varepsilon}$.

The original problem is now turned into checking the differential privacy with respect to a high-likely range and a given partition of that range.

Overview:

Algorithm 1 (ε ,*d*-adj) Differentially-private Test Framework

- 1: **function** Test Framework($\mathcal{M}, \varepsilon, y_{0:T}^1, y_{0:T}^2$)
- 2: **Inputs:** Target estimator \mathcal{M} , privacy level ε , sensor data $(y_{0:T}^1, y_{0:T}^2)$
- 3: EventList = EventListGenerator($\mathcal{M}, y_{0:T}^1$)

- 5: WorstEventSelector $(\mathcal{M}, \varepsilon, y_{0:T}^1, y_{0:T}^2, y_{0:T}^2)$
- 6: EventList)
- 7: $p^+, p_+ = \text{HypothesisTest}(\mathcal{M}, \varepsilon, y_{0:T}^1, y_{0:T}^2,$
- 8: WorstEvent)
- 9: Return p^+, p_+
- 10: end function

^{*} Test framework is inspired by the work: Z. Ding, Y. Wang, G. Wang, D. Zhang, and D. Kifer, "Detecting violations of differential privacy," in Proc. ACM SIGSAC Conf. Comput. Commun. Security, 2018, pp. 475–489.

Event list generation:

Algorithm 2 EventListGenerator

- 1: **function** EVENTLISTGENERATOR($\mathcal{M}, y_{0:T}^1, \beta, \gamma$)
- 2: **Input:** Target Estimator(\mathcal{M})
- 3: Sensor $Data(y_{0:T}^1)$
- 4: Parameters for Algorithm 3 (β , γ)
- 5: HighLikelySet ← Apply Algorithm 3
- 6: EventList \leftarrow a partition of the HighLikelySet
- 7: Return EventList
- 8: end function

^{*} HighLikelySet method is inspired by the work: A. Devonport and M. Arcak, "Estimating reachable sets with scenario optimization," in Proc. Annu. Learn. Dyn. Control Conf., 2020, pp. 75–84.

Algorithm 3 HighLikelySet
1: Input: Target Estimator(\mathcal{M}) with dimension d_X
2: Sensor data($y_{0:T}^1$), parameters β, γ
3: Output: Matrix A^k and vector b^k representing an
4: $1-\beta$ -accurate high-likely set at time step k
5: $R_k(A^k, b^k) = \left\{ x \in \mathbb{R}^{d_X} \mid A^k x + b^k _2 \le 1 \right\}$
6: with confidence $1 - \gamma$.
7: Set number of samples $\Gamma =$
8: $\left \frac{1}{\beta} \frac{e}{e-1} \left(\log \frac{1}{\gamma} + d_X (d_X + 1)/2 + d_X \right) \right $
9: for $k \in \{0,, T\}$ do
10: for $i \in \{0,, \Gamma\}$ do
11: Record $z_i^k = \mathcal{M}(y_{0:k}^1)$
12: end for
13: Solve the convex problem
14: $ \begin{array}{l} \arg\min_{A^{k},b^{k}} & -\log\det A^{k} \\ \text{subject to} & \ A^{k}z_{i}^{k}-b^{k}\ _{2}-1 \leq 0, \ i=0,\dots, 1 \end{array} $
15: return A^k, b^k
16: end for

8

Hypothesis Test:

Algorithm 4 WorstEvent Selector
1: function WORSTEVENTSELECTOR($n, \mathcal{M}, \varepsilon, y_{0:T}^1, y_{0:T}^2, z_{0:T}^2, z_{0:T}^$
EventList)
2: Input: Target Estimator(\mathcal{M})
3: Desired differential privacy(ε)
4: $dadjacent sensor data(y_{0:T}^1, y_{0:T}^2)$
5: EventList
6: $O_1 \leftarrow \text{Estimate set after } n \text{ runs of } \mathcal{M}(y_{0:T}^1)$
7: $O_2 \leftarrow \text{Estimate set after } n \text{ runs of } \mathcal{M}(y_{0:T}^2)$
8: pvalues ← []
9: for $E \in \text{EventList } \mathbf{do}$
10: $c_1 \leftarrow \{i O_1[i] \in E\} $
11: $c_2 \leftarrow \{i O_2[i] \in E\} $
12: $p^+, p_+ \leftarrow \text{PVALUE}(c_1, c_2, n, \varepsilon)$
13: $p^* \leftarrow \min(p^+, p_+)$
14: $pvalues.append(p^*)$
15: end for
16: WorstEvent \leftarrow EventList[argmin{pvalues}]
17: Return $E^* = WorstEvent$
18: end function

Algorithm 5 HypothesisTest

1: function PVALUE $(c_1, c_2, n, \varepsilon)$ $\bar{c_1} \leftarrow B(c_1, 1/e^{\varepsilon})$ 2: 3: $s \leftarrow \bar{c_1} + c_2$ 4: $p^+ \leftarrow 1$ - Hypergeom.cdf $(\bar{c_1} - 1|2n, n, s)$ 5: $\bar{c_2} \leftarrow B(c_2, 1/e^{\varepsilon})$ 6: $s \leftarrow \bar{c_2} + c_1$ $p_+ \leftarrow 1$ - Hypergeom.cdf($\bar{c_2} - 1 | 2n, n, s$) 7: 8. return p^+, p_+ 9: end function 10: **function** HYPOTHESISTEST($m, \mathcal{M}, \varepsilon, y_{0:T}^1, y_{0:T}^2, E^*$) **Input:** Target Estimator(\mathcal{M}) 11: Desired differential $privacy(\varepsilon)$ 12: *d*-adjacent sensor data $(y_{0:T}^1, y_{0:T}^2)$ 13: $E^*(WorstEvent)$ 14: $O_1 \leftarrow$ Estimate set after *m* runs of $\mathcal{M}(y_{0:T}^1)$ 15: $O_2 \leftarrow$ Estimate set after *m* runs of $\mathcal{M}(y_{0:T}^2)$ 16: 17: $c_1 \leftarrow |\{i|O_1[i] \in E^*\}|$ 18: $c_2 \leftarrow |\{i|O_2[i] \in E^*\}|$ $p^+, p_+ \leftarrow \text{PVALUE}(c_1, c_2, m, \varepsilon)$ 19: Return p^+, p_+ 20: 21: end function

Theoretical guarantee:

Theorem 1: Let \mathcal{M} be a state estimator of System 1, and let ε, d, β and $\gamma \in \mathbb{R}_{>0}$. We denote two *d*-adjacent sensor data as $y_{0:T}^i$, $i \in \{1, 2\}$ and a partition of the high-likely $(1 - 1)^{i}$ β) set R from Algorithm 3 with high confidence $1 - \gamma$ as $\mathcal{P} = \{E_1, \ldots, E_n\}$ such that $\mathbb{P}(E_i) \leq \eta$ for all *i*. Then, if Γ is selected accordingly, and the estimator passes the test in Algorithm 1, then \mathcal{M} is approximately (ε , *d*-adj) differentially private wrt $y_{0:T}^{i}$, $i \in \{1, 2\}$, and $\lambda = \beta + 2\eta e^{\varepsilon}$, with confidence $(1 - \alpha)(1 - \nu).$

Experiments

System & Observation model:

We consider a two-dimension non-isotropic model ($\mathbf{x}_k = (x_k^1, x_k^2)$) with the observation model as:

> $\mathbf{y}_{k}^{l} = h(\mathbf{x}_{k}, \mathbf{q}_{i}) + \mathbf{v}_{i,k}$ = 100 tanh $(0.1(\mathbf{x}_k - \mathbf{q}_i)) + \mathbf{v}_k^i$, i = 1, ..., 10,

where $\mathbf{q}_i \in \mathbb{R}^2$ is the position of sensor *i*.

Generate two d-adjacent sensor data: $y_{0:T}^1, y_{0:T}^2$

Implement the numerical framework on W_2 -MHE filter

•
$$\Gamma$$
 (= 814)

•
$$\beta = 0.05, \gamma = 10^{-9}$$

- T = 8, N = 5• r = 2
- $s_{\mu} = 1, 0.8 \text{ or } 0.7 \text{ (filter)}$

- Level of differential privacy \mathcal{E}
- Confidence value λ
- Estimation accuracy E_{correct} 11

Experiments

Test results

Experiments

Comparisons between different mechanisms

 W_2 -MHE filter vs Input Perturbation

Sensor Setup	W_2 MHE	Input Perturbation	Better choice
	$\varepsilon_c = 0.39947$	$\varepsilon_c = 0.41408$	
$\mathbf{Q_1}$	$\lambda = 0.0888$	λ =0.0803	Input Pert
	$E_{\rm correct} = 0.0040408$	$E_{\rm correct} = 0.0013998$	
	$\varepsilon_c = 0.53229$	$\varepsilon_c = 0.72204$	
$\mathbf{Q_2}$	$\lambda = 0.1011$	$\lambda = 0.2106$	W_2 -MHE
	$E_{\rm correct} = 0.0049874$	$E_{\text{correct}} = 0.0049674$	
	$\varepsilon_c = 0.98768$	$\varepsilon_c = 2.3423$	
$\mathbf{Q_3}$	$\lambda = 0.1037$	$\lambda = 0.8408$	W_2 -MHE
	$E_{\text{correct}} = 0.0030866$	$E_{\text{correct}} = 0.0037826$	

Specific to sensor setup
2 out of 3, filter wins

 W_2 -MHE filter vs Differentially private EKF ullet

Sensor Setup	ε_c	Ecorrect	Better choice					
Q_1	0.46223	0.0066205	W_2 -MHE				Wa MHE filter	filteric botto
Q_2	1.9239	0.0064686	W_2 -MHE		<u>vv2-1v11112</u>	IIIICI IS Delle		
Q_3	2.3085	0.0062608	W_2 -MHE]		13		

* Differential private EKF is inspired by the work: J. L. Ny and G. J. Pappas, "Differentially private filtering," IEEE Transactions on Automatic Control, pp. 341–354, 2014.

Conclusions

 A numerical test framework to evaluate the differential privacy of continuous-range mechanisms with a precise quantifiable performance guarantee

 A tool for the system designers to choose which differential-private mechanism to be used based on the numerical test results

Thank you for your time!

Funding: ONR N00014-19-1-2471