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Differential privacy(df) makes it hard to distinguish outputs of a
mechanism produced by adjacent inputs, which can help preserve
the privacy of shared data.

It is difficult to verify the df properties of the proposed estimation '3 E e ...... .
mechanisms!'?I8] since they take values on continuous spaces, WA T S T
requiring to check for an infinite set of inequalities.

The numerical verification framework mitigates this problem by 7 ;
partitioning the continuous space into a suitably chosen finite set of \ﬁL
collection and making the evaluation wrt this partition. :

We confirm the df properties of a novel W, MHE, while comparing
its performance with alternative estimators in simulation. Figure 1. An example of differential privacy in sensor network
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Problem Formulation

System & Observation model:
. ) Tkl = f(zp, wy),
Yk = h(Tk, vg),
where z;, € R gy, € R¥, w, € R¥W and v, € R4V
A state estimator of this system is a stochastic mapping:
R(T+Ldy _y Rmdx  for some m > 1
Differential privacy in estimation:

Definition 1 ((e, d-Adjacent), A-Approximate, Differential
Privacy): Let M be a state estimator of System 1 and dy
a distance metric on R+t Given ¢, 1, d € R>p, M is
(e, d-adjacent), A-approximate, differentially private if for any e for all £ C range(M)

] 2 R(T—l—l)dy ith d 1 2 <d h
Yo.r» Yor € , with dy (o7, Yo.r) < d we have

P(M(yhr) € E) <eP(M(vhr) €EN+1 @)

e fori,7 = 1,2

e (g,d-adj), for A=0"



Technical challenges:
e Unknown range of the estimator -> High-likelihood differential privacy
e Infinite set of space partition -> |dentification of a suitable space partition

High-likelihood differential privacy:

Definition 2: (High-likelihood (¢,d-adj) Differential Pri-
vacy). Suppose that M is a state estimator of System 1.
Given ¢,d € R, we say that M is (e,d-adj) differentially
private with high likelihood 1 — 6 if there exists an event R
with P(R) > 1 — 6 such that, for any two y}.,, i = 1,2,
with dy (y3.7, ya.7) < d, we have:

P(M(vi.z) € E|R) < efP(M(¥}.1) € E|R),

for ¢,j € {1,2} and all events £ C range(M).

Lemma 1: Suppose that M is a high-likelihood (e,d-adj)
differentially private estimator, with likelihood 1 — 6. Then,
M is (e,d-adj)-\ differentially private with A\ = 6.



Challenges & Solution

Identification of a suitable space partition:

Definition 3 (Differential privacy wrt a space partition):
Let M be an estimator of System 1 and P = {F1, ..., E,}
be a space partition? of range(M). We say that M is
(e,d-adj) differentially private wrt P if the definition of
(e,d-adj) differential privacy holds for each Fj € P.

Lemma 2: Let M be a state estimator of System 1, and
consider a partition of range(M), Py = {FE1,...,E,, },
which is finer than another partition Py = {Fy,..., F,,}
(n1 > n9). That is, each F; can be represented by the disjoint
union F; = U, E;_. Then, if M is (e,d-adj) differentally
private wrt Py, then it is also differentially private wrt Ps.

2By partition we mean a collection of mutually exclusive and collectively
exhaustive set of events wrt P.



Challenges & Solution

Identification of a suitable space partition:

Lemma 3: Consider a partition P = {E;};c7 such that
P(E;) < n for all ¢ € Z. Then, if (e,d-adj) differential
privacy holds wrt the partition P, then M is (&,d-adj)-A
differentially private with A = 2ne®.

The original problem is now turned into checking the differential privacy with respect to a
high-likely range and a given partition of that range.



Test Framework

Overview:

Algorithm 1 (¢,d-adj) Differentially-private Test Framework

1: function TEST FRAMEWORK(M, €, y&.7, Y2.7)

2: Inputs: Target estimator M, privacy level €, sensor
data (y(%:T7 yg:T)

3 EventList = EventListGenerator(M, y(l):T)

4 WorstEvent =

5 WorstEventSelector(M,€,y(1):T,y8:T,

6: EventList)

g pT,ps = HypothesisTest(M,e, Y(l):Tvyg:T’

8 WorstEvent)

9 Return p™, p,

10: end function

* Test framework is inspired by the work: Z. Ding, Y. Wang, G. Wang, D. Zhang, and D. Kifer, “Detecting violations of differential privacy,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Security, 2018, pp. 475—489.



Test Framework

Event list generation:

Algorithm 2 EventListGenerator Algorithm 3 HighLikelySet

1: function EVENTLISTGENERATOR(M, y(l):T, B,v) 1: Input: Target Estimator(M) with dimension dx

2 Input: Target Estimator(M) : Sensor data(y}.r), parameters [3,

3 Sensor Data(y,;) . Output: Matrix A* and vector b* representing an

4: Parameters for Algorithm 3 (B, y) 1-B-accurate high-likely set at time step &

5 HighLikelySet < Apply Algorithm 3 Ry (A%, bF) = {z € RIx ||| A2 + b*||2 < 1}
6

7

8:

2
3
4
5

EventList <« a partition of the HighLikelySet 6: with confidence 1 — .
7: Set number of samples I' =
8
9

: 1257 (log 2 + dx(dx +1)/2 + dx )|
: for £k €{0,...,T} do
10: for i € {0,...,T'} do

Return EventList
end function

11: Record zF = M (v} ;)
12 end for
13 Solve the convex problem
14 argmin gk p,»  — log det AF
: . k k _ 1kl _ o
* HighLikelySet method is inspired by the work: A. Devonport and M. Arcak, “Estimating Sllb_]eCt to HA Zi b H2 1< 0’ = O’ e

reachable sets with scenario optimization,” in Proc. Annu. Learn. Dyn. Control Conf., 15: return Ak, bk
2020, pp. 75-84. 16: end for




Test Framework
Hypothesis Test:

Algorithm 4 WorstEvent Selector

1: function WORSTEVENTSELECTOR(n, M, &, y}.7. Y37,

2
3
4
5
6:
7
8
9

10:
11;
12;
13:
14:
15:
16:
17;

EventList)

Input: Target Estimator(M)
Desired differential privacy(e)
dadjacent sensor data(y(l):T, yg:T)
EventList
01 < Estimate set after n runs of M(yé:T)
O, < Estimate set after n runs of M(yg.,)
pvalues <« [ ]
for E € EventList do
c1 < |{ilO1li] € E}|
c2 < |{il02i] € E}|
pT,p+ < PVALUE (¢, ¢z, 1, &)
p* < min(p*, py)
pvalues.append(p™)
end for
WorstEvent <— EventList[argmin{pvalues}]
Return E* = WorstEvent

18: end function

Algorithm 5 HypothesisTest

1: function PVALUE(cy, ¢, 1, €)

2: ¢1 < B(cy, 1/€°)

3: s< 1+
4 pT < 1 - Hypergeom.cdf(¢; — 1|2n, n, s)
5: ¢y < B(cp, 1/€°)
6: s < () +c1
7 p+ < 1 - Hypergeom.cdf(¢c; — 1|2n, n, s)

8: return pt, p,

9: end function

10: function HYPOTHESISTEST(m, M, &, y} 7. 3.7, E¥)
11: Input: Target Estimator(M)

12: Desired differential privacy(e)

13: d-adjacent sensor data(y(l):T, y%:T)

14: E*(WorstEvent)

15: 0, <« Estimate set after m runs of M(ylzT)
16: 0, <« Estimate set after m runs of M(yg:T)

17: c1 < |{i|O1[i] € E*}

18: ¢y < |{i|O2[i] € E*}]

19: p+,p+ <« PVALUE (cy, ¢y, m, €)
20: Return p™, py

21: end function

* Numerical test method is inspired by the work: R. A. Fisher, The Design of Experiments. Edinburgh, U.K.: Oliver Boyd, 1935, pp. 252-254.



Test Framework

Theoretical guarantee:

Theorem 1: Let M be a state estimator of System 1, and
let ¢,d,B and y € R>p. We denote two d-adjacent sensor
data as y.;, i € {1,2} and a partition of the high-likely (1 —
B) set R from Algorithm 3 with high confidence 1 — y as
P = {Ei, ..., E,} such that P(E;) < n for all i. Then, if
[' 1s selected accordingly, and the estimator passes the test in
Algorithm 1, then M is approximately (¢, d-adj) differentially
private wrt yf):T, i €{l1,2}, and A = B+ 2ne®, with confidence
(1 —a)(1 - ).

10



System & Observation model:
1

We consider a two-dimension non-isotropic model ( X = ( 3 xk) ) with
the observation model as:

yi = h(Xk, @) + Vi
= 100tanh(0.1(xx — q;)) + Vi, i=1,...,10,
where (; € Rz 1s the position of sensor i .

Generate two d-adjacent sensor data: y(l):T, y%:T

Implement the numerical framework on W>-MHE filter

o [ (= 814)

® =005y =10" Compute e Level of differential privacy £

° T = 82,N =3 | > e Confidence value A

® 1 = e Estimation accuracy E

e s =1,080r0.7 (fiter) Y Seouect



Experiments

Test results
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Experiments

Comparisons between different mechanisms

e W,-MHE filter vs Input Perturbation
Sensor Setup W>oMHE Input Perturbation | Better choice
€c = 0.39947 e = 0.41408
Q1 A = 0.0888 A=0.0803 Input Pert

Ecorrect = 0.0040408 | Ecorrect = 0.0013998
ec = 0.53229 ec = 0.72204
Q2 A =0.1011 A=0.2106 Wa-MHE
Ecorrect = 0.0049874 | Ecorrect = 0.0049674
e = 0.98768 €c = 2.3423
Qs A = 0.1037 A = 0.8408 Wa-MHE
Ecorrect = 0.0030866 | Ecorrect = 0.0037826

Specific to sensor setup
2 out of 3, filter wins

.

e W)>-MHE filter vs Differentially private EKF

Sensor Setup Ec Beoirect Better choice
Q1 0.46223 0.0066205 Wo-MHE
Q2 1.9239 0.0064686 W9-MHE
Qs 2.3085 0.0062608 W5-MHE

E> e Wr-MHE filteris better
13

* Differential private EKF is inspired by the work: J. L. Ny and G. J. Pappas, “Differentially private filtering,” IEEE Transactions on Automatic Control, pp. 341-354, 2014.



e A numerical test framework to evaluate the differential
privacy of continuous-range mechanisms with a
precise quantifiable performance guarantee

e Atool for the system designers to choose which
differential-private mechanism to be used based on
the numerical test results
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